Technology Development Center at NICT Tetsuro Kondo, Yasuhiro Koyama, Ryuichi Ichikawa, Mamoru Sekido #### Abstract National Institute of Information and Communications Technology (NICT) has led the development of VLBI technique and has been keeping high activities in both observations and technical developments. This report gives a review of the Technology Development Center (TDC) at NICT and summarizes recent activities. ## 1. TDC at NICT National Institute of Information and Communications Technology (NICT) has published the newsletter "IVS NICT-TDC News (former IVS CRL-TDC News)" at least once a year in order to inform about developments of VLBI related technology as an IVS technology development center. The newsletter is available through the Internet at the URL: http://www2.nict.go.jp/w/w114/stsi/ivstdc/news-index.html (changed in April 2006). #### 2. Staff Members of NICT TDC Table 1 lists the staff members at NICT who are involved in the VLBI technology development center at NICT. | Name | Works | |--------------------|--| | HOBIGER, Thomas | VLBI analysis, Small antenna system | | ICHIKAWA, Ryuichi | VLBI for spacecraft navigation, Small antenna system | | ISHII, Atsutoshi | Small antenna system | | KAWAI, Eiji | 34m and 11m antenna system | | KIMURA, Moritaka | e-VLBI, Giga-bit system, K5/VSI, Software correlator | | KONDO, Tetsuro | e-VLBI, K5/VSSP32, Software correlator | | KOYAMA, Yasuhiro | e-VLBI, VLBI analysis | | KUBOKI, Hiromitsu | Antenna system, CARAVAN* system | | SEKIDO, Mamoru | e-VLBI, VLBI for spacecraft navigation | | TAKEUCHI, Hiroshi | e-VLBI, VLBI@home, ADS3000 (moved to JAXA on 3/1/2006) | | TAKIGUCHI, Hiroshi | VLBI analysis | | TSUTSUMI, Masanori | e-VLBI | Table 1. Staff Members of NICT TDC as of December, 2006 (alphabetical). ## 3. Current Status and Activities ## 3.1. K5 Samplers NICT has developed two types of samplers: 1) ADS series sampler equipped with a VSI-H interface; 2) VSSP series sampler not equipped with a VSI-H but directly connectable to a host IVS 2006 Annual Report 259 ^{*} CARAVAN: Compact Antenna of Radio Astronomy for VLBI Adapted Network system PC. Samplers developed by NICT are summarized in Table 2. | | ADS1000 | ADS2000 | ADS3000 | K5/VSSP | K5/VSSP32 | |------------------|--------------------|-------------------|-------------------|---------------------|---------------------| | Ref. Sig. | $10 \mathrm{~MHz}$ | $10~\mathrm{MHz}$ | $10~\mathrm{MHz}$ | $10~\mathrm{MHz}$ | 10/5 MHz | | | 1 PPS | | # of Input Ch. | 1 | 16 | 1 | 4 | 4 | | A/D bits | 1, 2 | 2 | 8 | $1,\ 2,\ 4,\ 8$ | 1, 2, 4, 8 | | Sampling Freq. | $512,\ 1024$ | 2, 4, 8, 16, | 2048 | $0.04,\ 0.1,\ 0.2,$ | $0.04,\ 0.1,\ 0.2,$ | | (MHz) | | 32,64 | | $0.5,\ 1,\ 2,\ 4,$ | $0.5,\ 1,\ 2,\ 4,$ | | | | | | 8, 16 | $8,\ 16,\ 32,\ 64$ | | Output Interface | VSI-H | VSI-H | VSI-H $\times 2$ | PCI-bus | ${ m USB2.0}$ | | Function | _ | PCAL detection | DBBC etc. | | digital LPF | Table 2. Specifications of the K5 samplers. Figure 1. ADS3000 (left) and K5/VSSP32 (right). Figure 1 shows ADS3000 and K5/VSSP32. ADS3000 is a successor to the ADS1000. It is equipped with two VSI-H ports and is greatly improved in performance [1][2]. By use of a high-performance FPGA it is possible to output in a variety of modes with a data rate of up to 4 Gbps (Table 3). Furthermore, FPGA code is rewritable so that it can be used for multiple applications such as digital baseband converter (DBBC) for multi-channel geodetic VLBI, software demodulator for spacecraft downlink signal in spacecraft VLBI or satellite communications, or spectrometer for broadband astronomical observations. K5/VSSP32 is a successor to the K5/VSSP. Maximum sampling frequency per channel is increased up to 64 MHz [3][4]. As a K5/VSSP32 unit has 4 channel analog inputs, 4 units can cover 16 channels which is a sufficient number of channels for geodetic VLBI. Maximum data rate is 1024 Mbps with 4 PCs. Although we have succeeded in some fringe tests using K5/VSSP32, we are improving both hardware and software to increase its reliability and performance. ## $3.2. \text{ K}_5/\text{VSI}$ A VSI data capture board (VSI2000-DIM) developed by NICT can now capture data continuously with a data rate of up to 2 Gbps. Using a board with a PC equipped with a RAID disk system, we can record data with a recording rate of up to 2 Gbps. Tables 4 and 5 summarize the | Total rate | Sampling rate | # of AD bits | VSI-H clock rate | Output port | |---------------------|-----------------------|--------------|-------------------|---------------------------| | 1 Gbps | $128 \mathrm{\ MSps}$ | 8 | $32~\mathrm{MHz}$ | VSI-H port1 | | $2~\mathrm{Gbps}$ | $1024~\mathrm{MSps}$ | 2 | $32~\mathrm{MHz}$ | VSI-H port1 + VSI-H port2 | | $2 \mathrm{Gbps}$ | 512 MSps | 4 | $32~\mathrm{MHz}$ | VSI-H port1 + VSI-H port2 | | $2 \mathrm{Gbps}$ | $256 \mathrm{MSps}$ | 8 | $32~\mathrm{MHz}$ | VSI-H port1 + VSI-H port2 | | $2 \mathrm{Gbps}$ | $256 \mathrm{MSps}$ | 8 | $64~\mathrm{MHz}$ | VSI-H port1 | | $4~\mathrm{Gbps}$ | $2048~\mathrm{MSps}$ | 2 | $64~\mathrm{MHz}$ | VSI-H port1 + VSI-H port2 | | $4~\mathrm{Gbps}$ | $1024~\mathrm{MSps}$ | 4 | $64~\mathrm{MHz}$ | VSI-H port1 + VSI-H port2 | | $4~\mathrm{Gbps}$ | $512 \mathrm{\ MSps}$ | 8 | $64~\mathrm{MHz}$ | VSI-H port1 + VSI-H port2 | | | | | | | Table 3. Selectable output modes of ADS3000. characteristics of the K5/VSI board and recording system. Table 4. K5/VSI data capture | $\underline{\hspace{1cm}}$ board | | | |----------------------------------|-------------------------------------|--| | Continuous | 2048 | | | Capture Rate | 1024 | | | (Mbps) | 512 | | | | 256 | | | Input Interface | VSI-H | | | PCI Interface | PCI-X | | | | $(64 \mathrm{bit}/66 \mathrm{MHz})$ | | Table 5. K5/VSI data recording system (VSI2000-DIM + RAID). | Disk Storage Interface | Dual Fiber Channel | | | |------------------------|----------------------|--|--| | Max Recording Rate | $2048~\mathrm{Mbps}$ | | | | HDD size | 3TB | | | | | 3 @2048 Mbps | | | | Continuous Recording | 6 @1024 Mbps | | | | Time (hours) | 12 @512 Mbps | | | | | 24 @256 Mbps | | | # 3.3. E-VLBI We have performed e-VLBI demonstration in the international conference of "Super Computing 2006" held at Tampa, Florida, USA. Pseudo data were transferred between USA and Japan at the demonstration, and a data transfer rate of 512 Mbps was achieved (see "VLBI Correlators in Kashima" in this volume for details). #### 3.4. Small Antenna System We have been developing a 2.4 m antenna VLBI system (Figure 3) named CARAVAN2400 equipped with an X band receiver [5][6]. First geodetic VLBI observations using the CARAVAN2400 were made together with Tsukuba 32 m antenna (baseline length is about 54 km) on Sept. 21-22, 2006. Eight video channel signals with 8 MHz bandwidth each on X band were sampled using K5/VSSP samplers at both stations. The position of CARAVAN2400 was successfully estimated with a standard deviation of better than 1 cm. #### 4. Future Plans We will start the development of a 1-m class antenna system for geodetic VLBI observation in collaboration with GSI. This system will be dedicated to the precise measurement of a reference IVS 2006 Annual Report 261 baseline maintained by GSI for the calibration of surveying equipment. A combination of a diplexer and a wide band feed that covers 2-18 GHz will be adopted in the 1-m class system. In order to investigate the performance of a wide band feed, it will be installed in CARAVAN2400 system first. It will contribute to examine the feasibility of VLBI2010's recommendations for next generation system. Figure 3. 2.4 m antenna (front) and 34 m antenna (back) at Kashima during a fringe test. #### References - [1] Takeuchi, H., M. Kimura, J. Nakajima, R. Ichikawa, M. Sekido, T. Kondo, Y. Koyama, A VSI-compliant 2-Gsps DAS for spacecraft differential VLBI, IVS 2006 General Meeting Proceedings, pp.221–225, 2006. - [2] Takeuchi, H., M. Kimura, J. Nakajima, T. Kondo, Y. Koyama, R. Ichikawa, M. Sekido, and E. Kawai, Development of a 4 Gbps multifunctional very long baseline interferometry data acquisition system, *Publ. Astron. Soc. Pac.*,118, pp.1739–1748, 2006. - [3] Kondo, T., Y. Koyama, H. Takeuchi, and M. Kimura, Development of a new VLBI sampler unit (K5/VSSP32) equipped with a USB 2.0 interface, IVS 2006 General Meeting Proceedings, pp.195–199, 2006. - [4] Kondo, T., Y. Koyama, H. Takeuchi, and R. Ichikawa, A new VLBI sampler K5/VSSP32 developed by NICT, IVS NICT-TDC News, No.27, pp.5-8, August 2006. - [5] Ichikawa, R., H. Kuboki, Y. Koyama, J. Nakajima, and T. Kondo, Development of the new VLBI facility with a 2.4-m dish antenna at NICT, IVS NICT-TDC News, No.26, p.13, September 2005. - [6] Ishii, A., R. Ichikawa, H. Kuboki, Y. Koyama, K. Takashima, and J. Fujisaki, VLBI experiments using CARAVAN2400, IVS NICT-TDC News, No.27, pp.9–11, August 2006.